Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems

Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming problems. At each outer iteration of these methods a simpler optimization problem is solved, for which efficient algorithms can be used, especially when the problems are large. The most famous Augmented Lagrangian algorithm for minimization with inequality constraints is known as Powell-Hestenes-Rockafellar...

متن کامل

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience Frank E. Curtis, Nicholas I.M. Gould, Hao Jiang & Daniel P. Robinson a Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA b STFC-Rutherford Appleton Laboratory, Numerical Analysis Group, R18, Chilton, OX11 0QX, UK c Department of Applied Mathematics and Statistics, Johns Hop...

متن کامل

An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization

This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...

متن کامل

A Feasible Augmented Lagrangian Method for Non-lipschitz Nonconvex Programming

We consider a class of constrained optimization problems where the objective function is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse portfolio selection, edge preserving image restoration and signal processing can be modelled in this form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the non-Lipschitz proble...

متن کامل

An Augmented Lagrangian Method for Non-Lipschitz Nonconvex Programming

We consider a class of constrained optimization problems where the objective function is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse portfolio selection, edge preserving image restoration and signal processing can be modelled in this form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the non-Lipschitz proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2005

ISSN: 0926-6003,1573-2894

DOI: 10.1007/s10589-005-1066-7